MakeItFrom.com
Menu (ESC)

EN 1.7233 Steel vs. C84100 Brass

EN 1.7233 steel belongs to the iron alloys classification, while C84100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7233 steel and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 290
65
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18 to 23
13
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 700 to 960
230
Tensile Strength: Yield (Proof), MPa 380 to 780
81

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 430
160
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
810
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 39
110
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
23
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
25

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.6
2.9
Embodied Energy, MJ/kg 21
48
Embodied Water, L/kg 53
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 200
24
Resilience: Unit (Modulus of Resilience), kJ/m3 380 to 1630
30
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 25 to 34
7.4
Strength to Weight: Bending, points 22 to 28
9.7
Thermal Diffusivity, mm2/s 11
33
Thermal Shock Resistance, points 21 to 28
7.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Carbon (C), % 0.39 to 0.45
0
Chromium (Cr), % 1.2 to 1.5
0
Copper (Cu), % 0
78 to 85
Iron (Fe), % 96.2 to 97.5
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.5 to 0.7
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 0.4
0 to 0.010
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
1.5 to 4.5
Zinc (Zn), % 0
12 to 20
Residuals, % 0
0 to 0.5