MakeItFrom.com
Menu (ESC)

EN 1.7239 Steel vs. EN 1.8912 Steel

Both EN 1.7239 steel and EN 1.8912 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.7239 steel and the bottom bar is EN 1.8912 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 480
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 660 to 1990
600

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 44
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.8
Embodied Energy, MJ/kg 20
24
Embodied Water, L/kg 50
51

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23 to 71
21
Strength to Weight: Bending, points 21 to 45
20
Thermal Diffusivity, mm2/s 12
12
Thermal Shock Resistance, points 19 to 59
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0.56 to 0.64
0 to 0.22
Chromium (Cr), % 0.7 to 1.0
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 96.8 to 98
95 to 99.05
Manganese (Mn), % 0.7 to 1.0
1.0 to 1.8
Molybdenum (Mo), % 0.060 to 0.15
0 to 0.13
Nickel (Ni), % 0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.65
Sulfur (S), % 0 to 0.025
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.22