MakeItFrom.com
Menu (ESC)

EN 1.7335 Steel vs. 2117 Aluminum

EN 1.7335 steel belongs to the iron alloys classification, while 2117 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7335 steel and the bottom bar is 2117 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 160
70
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 21 to 22
26
Fatigue Strength, MPa 200 to 220
95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Shear Strength, MPa 310 to 330
200
Tensile Strength: Ultimate (UTS), MPa 500 to 520
300
Tensile Strength: Yield (Proof), MPa 280 to 310
170

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 430
220
Melting Completion (Liquidus), °C 1470
650
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 44
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
10
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 1.6
8.2
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 52
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 97
64
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 260
190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 18
28
Strength to Weight: Bending, points 18
33
Thermal Diffusivity, mm2/s 12
59
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0
91 to 97.6
Carbon (C), % 0.080 to 0.18
0
Chromium (Cr), % 0.7 to 1.2
0 to 0.1
Copper (Cu), % 0 to 0.3
2.2 to 4.5
Iron (Fe), % 96.4 to 98.4
0 to 0.7
Magnesium (Mg), % 0
0.2 to 1.0
Manganese (Mn), % 0.4 to 1.0
0.4 to 1.0
Molybdenum (Mo), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.35
0.2 to 0.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15