MakeItFrom.com
Menu (ESC)

EN 1.7335 Steel vs. EN 1.8895 Steel

Both EN 1.7335 steel and EN 1.8895 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7335 steel and the bottom bar is EN 1.8895 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 160
120
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21 to 22
26
Fatigue Strength, MPa 200 to 220
220
Impact Strength: V-Notched Charpy, J 31 to 35
46
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 310 to 330
260
Tensile Strength: Ultimate (UTS), MPa 500 to 520
400
Tensile Strength: Yield (Proof), MPa 280 to 310
300

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 430
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 44
49
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
2.2
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.6
Embodied Energy, MJ/kg 21
21
Embodied Water, L/kg 52
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 97
96
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 260
240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
14
Strength to Weight: Bending, points 18
15
Thermal Diffusivity, mm2/s 12
13
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0.080 to 0.18
0 to 0.13
Chromium (Cr), % 0.7 to 1.2
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.4 to 98.4
97 to 99.98
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Molybdenum (Mo), % 0.4 to 0.6
0 to 0.2
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.012
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.080