MakeItFrom.com
Menu (ESC)

EN 1.7335 Steel vs. Grade 17 Titanium

EN 1.7335 steel belongs to the iron alloys classification, while grade 17 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7335 steel and the bottom bar is grade 17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21 to 22
27
Fatigue Strength, MPa 200 to 220
160
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
38
Shear Strength, MPa 310 to 330
180
Tensile Strength: Ultimate (UTS), MPa 500 to 520
270
Tensile Strength: Yield (Proof), MPa 280 to 310
210

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 430
320
Melting Completion (Liquidus), °C 1470
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 44
23
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
7.3

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.6
36
Embodied Energy, MJ/kg 21
600
Embodied Water, L/kg 52
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 97
68
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 260
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 12
9.3
Thermal Shock Resistance, points 15
21

Alloy Composition

Carbon (C), % 0.080 to 0.18
0 to 0.080
Chromium (Cr), % 0.7 to 1.2
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.4 to 98.4
0 to 0.2
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.6
0
Nitrogen (N), % 0 to 0.012
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
99.015 to 99.96
Residuals, % 0
0 to 0.4