EN 1.7335 Steel vs. Nuclear Grade Hafnium
EN 1.7335 steel belongs to the iron alloys classification, while nuclear grade hafnium belongs to the otherwise unclassified metals. There are 17 material properties with values for both materials. Properties with values for just one material (16, in this case) are not shown.
For each property being compared, the top bar is EN 1.7335 steel and the bottom bar is nuclear grade hafnium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
78 |
Elongation at Break, % | 21 to 22 | |
25 |
Poisson's Ratio | 0.29 | |
0.26 |
Shear Modulus, GPa | 73 | |
31 |
Tensile Strength: Ultimate (UTS), MPa | 500 to 520 | |
350 |
Tensile Strength: Yield (Proof), MPa | 280 to 310 | |
170 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
130 |
Specific Heat Capacity, J/kg-K | 470 | |
140 |
Thermal Expansion, µm/m-K | 13 | |
5.9 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.9 | |
13 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 91 to 97 | |
73 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 210 to 260 | |
180 |
Stiffness to Weight: Axial, points | 13 | |
3.3 |
Stiffness to Weight: Bending, points | 24 | |
11 |
Strength to Weight: Axial, points | 18 | |
7.4 |
Strength to Weight: Bending, points | 18 | |
8.4 |
Thermal Shock Resistance, points | 15 | |
55 |
Alloy Composition
Carbon (C), % | 0.080 to 0.18 | |
0 |
Chromium (Cr), % | 0.7 to 1.2 | |
0 |
Copper (Cu), % | 0 to 0.3 | |
0 |
Hafnium (Hf), % | 0 | |
99.8 to 100 |
Iron (Fe), % | 96.4 to 98.4 | |
0 |
Manganese (Mn), % | 0.4 to 1.0 | |
0 |
Molybdenum (Mo), % | 0.4 to 0.6 | |
0 |
Nitrogen (N), % | 0 to 0.012 | |
0 |
Phosphorus (P), % | 0 to 0.025 | |
0 |
Silicon (Si), % | 0 to 0.35 | |
0 |
Sulfur (S), % | 0 to 0.010 | |
0 |
Residuals, % | 0 | |
0 to 0.23 |