MakeItFrom.com
Menu (ESC)

EN 1.7335 Steel vs. S36200 Stainless Steel

Both EN 1.7335 steel and S36200 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7335 steel and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21 to 22
3.4 to 4.6
Fatigue Strength, MPa 200 to 220
450 to 570
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 310 to 330
680 to 810
Tensile Strength: Ultimate (UTS), MPa 500 to 520
1180 to 1410
Tensile Strength: Yield (Proof), MPa 280 to 310
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 430
820
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 44
16
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
12
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.6
2.8
Embodied Energy, MJ/kg 21
40
Embodied Water, L/kg 52
120

Common Calculations

PREN (Pitting Resistance) 2.7
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 97
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 260
2380 to 3930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
42 to 50
Strength to Weight: Bending, points 18
32 to 36
Thermal Diffusivity, mm2/s 12
4.3
Thermal Shock Resistance, points 15
40 to 48

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.080 to 0.18
0 to 0.050
Chromium (Cr), % 0.7 to 1.2
14 to 14.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.4 to 98.4
75.4 to 79.5
Manganese (Mn), % 0.4 to 1.0
0 to 0.5
Molybdenum (Mo), % 0.4 to 0.6
0 to 0.3
Nickel (Ni), % 0
6.5 to 7.0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.35
0 to 0.3
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0.6 to 0.9