MakeItFrom.com
Menu (ESC)

EN 1.7335 Steel vs. S44660 Stainless Steel

Both EN 1.7335 steel and S44660 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7335 steel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 160
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 21 to 22
20
Fatigue Strength, MPa 200 to 220
330
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
81
Shear Strength, MPa 310 to 330
410
Tensile Strength: Ultimate (UTS), MPa 500 to 520
660
Tensile Strength: Yield (Proof), MPa 280 to 310
510

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 430
1100
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 44
17
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
21
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.6
4.3
Embodied Energy, MJ/kg 21
61
Embodied Water, L/kg 52
180

Common Calculations

PREN (Pitting Resistance) 2.7
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91 to 97
120
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 260
640
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 12
4.5
Thermal Shock Resistance, points 15
21

Alloy Composition

Carbon (C), % 0.080 to 0.18
0 to 0.030
Chromium (Cr), % 0.7 to 1.2
25 to 28
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.4 to 98.4
60.4 to 71
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.4 to 0.6
3.0 to 4.0
Nickel (Ni), % 0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0 to 0.012
0 to 0.040
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0