MakeItFrom.com
Menu (ESC)

EN 1.7336 Steel vs. AISI 436 Stainless Steel

Both EN 1.7336 steel and AISI 436 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7336 steel and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
25
Fatigue Strength, MPa 240 to 310
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 370
320
Tensile Strength: Ultimate (UTS), MPa 590
500
Tensile Strength: Yield (Proof), MPa 340 to 440
270

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 430
880
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 3.1
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.6
2.7
Embodied Energy, MJ/kg 21
38
Embodied Water, L/kg 53
120

Common Calculations

PREN (Pitting Resistance) 3.2
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 510
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 11
6.7
Thermal Shock Resistance, points 17
18

Alloy Composition

Carbon (C), % 0 to 0.17
0 to 0.12
Chromium (Cr), % 1.0 to 1.5
16 to 18
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 95.6 to 97.7
77.8 to 83.3
Manganese (Mn), % 0.4 to 0.65
0 to 1.0
Molybdenum (Mo), % 0.45 to 0.65
0.75 to 1.3
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0.5 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030