EN 1.7336 Steel vs. Grade 35 Titanium
EN 1.7336 steel belongs to the iron alloys classification, while grade 35 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.7336 steel and the bottom bar is grade 35 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 22 | |
5.6 |
Fatigue Strength, MPa | 240 to 310 | |
330 |
Poisson's Ratio | 0.29 | |
0.32 |
Shear Modulus, GPa | 73 | |
41 |
Shear Strength, MPa | 370 | |
580 |
Tensile Strength: Ultimate (UTS), MPa | 590 | |
1000 |
Tensile Strength: Yield (Proof), MPa | 340 to 440 | |
630 |
Thermal Properties
Latent Heat of Fusion, J/g | 260 | |
420 |
Maximum Temperature: Mechanical, °C | 430 | |
320 |
Melting Completion (Liquidus), °C | 1460 | |
1630 |
Melting Onset (Solidus), °C | 1420 | |
1580 |
Specific Heat Capacity, J/kg-K | 470 | |
550 |
Thermal Conductivity, W/m-K | 40 | |
7.4 |
Thermal Expansion, µm/m-K | 13 | |
9.3 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.5 | |
1.1 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.6 | |
2.2 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 3.1 | |
37 |
Density, g/cm3 | 7.8 | |
4.6 |
Embodied Carbon, kg CO2/kg material | 1.6 | |
33 |
Embodied Energy, MJ/kg | 21 | |
530 |
Embodied Water, L/kg | 53 | |
170 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 to 120 | |
49 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 310 to 510 | |
1830 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
35 |
Strength to Weight: Axial, points | 21 | |
61 |
Strength to Weight: Bending, points | 20 | |
49 |
Thermal Diffusivity, mm2/s | 11 | |
3.0 |
Thermal Shock Resistance, points | 17 | |
70 |
Alloy Composition
Aluminum (Al), % | 0 | |
4.0 to 5.0 |
Carbon (C), % | 0 to 0.17 | |
0 to 0.080 |
Chromium (Cr), % | 1.0 to 1.5 | |
0 |
Copper (Cu), % | 0 to 0.3 | |
0 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 95.6 to 97.7 | |
0.2 to 0.8 |
Manganese (Mn), % | 0.4 to 0.65 | |
0 |
Molybdenum (Mo), % | 0.45 to 0.65 | |
1.5 to 2.5 |
Nickel (Ni), % | 0 to 0.3 | |
0 |
Nitrogen (N), % | 0 to 0.012 | |
0 to 0.050 |
Oxygen (O), % | 0 | |
0 to 0.25 |
Phosphorus (P), % | 0 to 0.015 | |
0 |
Silicon (Si), % | 0.5 to 0.8 | |
0.2 to 0.4 |
Sulfur (S), % | 0 to 0.0050 | |
0 |
Titanium (Ti), % | 0 | |
88.4 to 93 |
Vanadium (V), % | 0 | |
1.1 to 2.1 |
Residuals, % | 0 | |
0 to 0.4 |