MakeItFrom.com
Menu (ESC)

EN 1.7338 Steel vs. AWS E320

Both EN 1.7338 steel and AWS E320 are iron alloys. They have 41% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is EN 1.7338 steel and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 490
620

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 13
14

Otherwise Unclassified Properties

Base Metal Price, % relative 3.1
38
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.6
6.5
Embodied Energy, MJ/kg 21
91
Embodied Water, L/kg 53
220

Common Calculations

PREN (Pitting Resistance) 3.1
28
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 18
20
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0 to 0.15
0 to 0.070
Chromium (Cr), % 1.0 to 1.5
19 to 21
Copper (Cu), % 0 to 0.3
3.0 to 4.0
Iron (Fe), % 95.4 to 97.8
31.8 to 43.5
Manganese (Mn), % 0.3 to 0.6
0.5 to 2.5
Molybdenum (Mo), % 0.45 to 0.65
2.0 to 3.0
Nickel (Ni), % 0 to 0.3
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.5 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.030