MakeItFrom.com
Menu (ESC)

EN 1.7338 Steel vs. AWS ER80S-B6

Both EN 1.7338 steel and AWS ER80S-B6 are iron alloys. They have a very high 96% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7338 steel and the bottom bar is AWS ER80S-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
19
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Tensile Strength: Ultimate (UTS), MPa 490
620
Tensile Strength: Yield (Proof), MPa 300
540

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.1
4.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.8
Embodied Energy, MJ/kg 21
24
Embodied Water, L/kg 53
71

Common Calculations

PREN (Pitting Resistance) 3.1
7.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240
750
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0 to 0.15
0 to 0.1
Chromium (Cr), % 1.0 to 1.5
4.5 to 6.0
Copper (Cu), % 0 to 0.3
0 to 0.35
Iron (Fe), % 95.4 to 97.8
90.6 to 94.7
Manganese (Mn), % 0.3 to 0.6
0.4 to 0.7
Molybdenum (Mo), % 0.45 to 0.65
0.45 to 0.65
Nickel (Ni), % 0 to 0.3
0 to 0.6
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.5 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.025
Residuals, % 0
0 to 0.5