MakeItFrom.com
Menu (ESC)

EN 1.7338 Steel vs. S44537 Stainless Steel

Both EN 1.7338 steel and S44537 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7338 steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
21
Fatigue Strength, MPa 220
230
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
79
Shear Strength, MPa 310
320
Tensile Strength: Ultimate (UTS), MPa 490
510
Tensile Strength: Yield (Proof), MPa 300
360

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 430
1000
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
21
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.1
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.6
3.4
Embodied Energy, MJ/kg 21
50
Embodied Water, L/kg 53
140

Common Calculations

PREN (Pitting Resistance) 3.1
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
95
Resilience: Unit (Modulus of Resilience), kJ/m3 240
320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 11
5.6
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0 to 0.040
0 to 0.1
Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 1.0 to 1.5
20 to 24
Copper (Cu), % 0 to 0.3
0 to 0.5
Iron (Fe), % 95.4 to 97.8
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0.3 to 0.6
0 to 0.8
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0 to 0.3
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0.5 to 1.0
0.1 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0