MakeItFrom.com
Menu (ESC)

EN 1.7361 Steel vs. S44537 Stainless Steel

Both EN 1.7361 steel and S44537 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7361 steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 300
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11
21
Fatigue Strength, MPa 480
230
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
79
Shear Strength, MPa 600
320
Tensile Strength: Ultimate (UTS), MPa 1010
510
Tensile Strength: Yield (Proof), MPa 780
360

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 470
1000
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
21
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.6
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
3.4
Embodied Energy, MJ/kg 22
50
Embodied Water, L/kg 60
140

Common Calculations

PREN (Pitting Resistance) 4.4
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
95
Resilience: Unit (Modulus of Resilience), kJ/m3 1590
320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 36
18
Strength to Weight: Bending, points 29
18
Thermal Diffusivity, mm2/s 11
5.6
Thermal Shock Resistance, points 29
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0.28 to 0.35
0 to 0.030
Chromium (Cr), % 2.8 to 3.3
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 94.1 to 96.2
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0.4 to 0.7
0 to 0.8
Molybdenum (Mo), % 0.3 to 0.5
0
Nickel (Ni), % 0 to 0.6
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0 to 0.4
0.1 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0