MakeItFrom.com
Menu (ESC)

EN 1.7362 Steel vs. 5070 Aluminum

EN 1.7362 steel belongs to the iron alloys classification, while 5070 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7362 steel and the bottom bar is 5070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 21 to 22
20
Fatigue Strength, MPa 140 to 250
150
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 320 to 370
190
Tensile Strength: Ultimate (UTS), MPa 510 to 600
300
Tensile Strength: Yield (Proof), MPa 200 to 360
140

Thermal Properties

Latent Heat of Fusion, J/g 260
390
Maximum Temperature: Mechanical, °C 510
190
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
31
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.8
8.8
Embodied Energy, MJ/kg 23
150
Embodied Water, L/kg 69
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
51
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 340
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18 to 21
31
Strength to Weight: Bending, points 18 to 20
37
Thermal Diffusivity, mm2/s 11
53
Thermal Shock Resistance, points 14 to 17
14

Alloy Composition

Aluminum (Al), % 0
92.4 to 95.7
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 91.5 to 95.2
0 to 0.4
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0.3 to 0.6
0.4 to 0.8
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0 to 0.3
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0.4 to 0.8
Residuals, % 0
0 to 0.15