EN 1.7362 Steel vs. EN 1.5503 Steel
Both EN 1.7362 steel and EN 1.5503 steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is EN 1.7362 steel and the bottom bar is EN 1.5503 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 150 to 180 | |
120 to 160 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 21 to 22 | |
12 to 17 |
Fatigue Strength, MPa | 140 to 250 | |
180 to 280 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 74 | |
73 |
Shear Strength, MPa | 320 to 370 | |
270 to 320 |
Tensile Strength: Ultimate (UTS), MPa | 510 to 600 | |
400 to 520 |
Tensile Strength: Yield (Proof), MPa | 200 to 360 | |
270 to 430 |
Thermal Properties
Latent Heat of Fusion, J/g | 260 | |
250 |
Maximum Temperature: Mechanical, °C | 510 | |
400 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 40 | |
52 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 8.1 | |
7.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 9.4 | |
8.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 4.5 | |
1.8 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.8 | |
1.4 |
Embodied Energy, MJ/kg | 23 | |
18 |
Embodied Water, L/kg | 69 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 90 to 110 | |
41 to 81 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 100 to 340 | |
200 to 490 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 18 to 21 | |
14 to 19 |
Strength to Weight: Bending, points | 18 to 20 | |
15 to 18 |
Thermal Diffusivity, mm2/s | 11 | |
14 |
Thermal Shock Resistance, points | 14 to 17 | |
12 to 15 |
Alloy Composition
Boron (B), % | 0 | |
0.00080 to 0.0050 |
Carbon (C), % | 0.1 to 0.15 | |
0.16 to 0.2 |
Chromium (Cr), % | 4.0 to 6.0 | |
0 |
Copper (Cu), % | 0 to 0.3 | |
0 to 0.25 |
Iron (Fe), % | 91.5 to 95.2 | |
98.4 to 99.239 |
Manganese (Mn), % | 0.3 to 0.6 | |
0.6 to 0.8 |
Molybdenum (Mo), % | 0.45 to 0.65 | |
0 |
Nickel (Ni), % | 0 to 0.3 | |
0 |
Nitrogen (N), % | 0 to 0.012 | |
0 |
Phosphorus (P), % | 0 to 0.020 | |
0 to 0.025 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.3 |
Sulfur (S), % | 0 to 0.0050 | |
0 to 0.025 |