MakeItFrom.com
Menu (ESC)

EN 1.7362 Steel vs. C15000 Copper

EN 1.7362 steel belongs to the iron alloys classification, while C15000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7362 steel and the bottom bar is C15000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21 to 22
13 to 54
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 320 to 370
150 to 280
Tensile Strength: Ultimate (UTS), MPa 510 to 600
200 to 460
Tensile Strength: Yield (Proof), MPa 200 to 360
45 to 460

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 510
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
980
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
370
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
93
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
93

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 23
43
Embodied Water, L/kg 69
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
19 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 340
8.7 to 910
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18 to 21
6.2 to 14
Strength to Weight: Bending, points 18 to 20
8.5 to 15
Thermal Diffusivity, mm2/s 11
110
Thermal Shock Resistance, points 14 to 17
7.3 to 17

Alloy Composition

Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0 to 0.3
99.8 to 99.9
Iron (Fe), % 91.5 to 95.2
0
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0 to 0.3
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0050
0
Zirconium (Zr), % 0
0.1 to 0.2