MakeItFrom.com
Menu (ESC)

EN 1.7362 Steel vs. C37700 Brass

EN 1.7362 steel belongs to the iron alloys classification, while C37700 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7362 steel and the bottom bar is C37700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 21 to 22
40
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
39
Shear Strength, MPa 320 to 370
270
Tensile Strength: Ultimate (UTS), MPa 510 to 600
400
Tensile Strength: Yield (Proof), MPa 200 to 360
160

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 510
120
Melting Completion (Liquidus), °C 1460
890
Melting Onset (Solidus), °C 1420
880
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
27
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
30

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
23
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.8
2.6
Embodied Energy, MJ/kg 23
45
Embodied Water, L/kg 69
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 340
120
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18 to 21
14
Strength to Weight: Bending, points 18 to 20
15
Thermal Diffusivity, mm2/s 11
39
Thermal Shock Resistance, points 14 to 17
13

Alloy Composition

Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0 to 0.3
58 to 61
Iron (Fe), % 91.5 to 95.2
0 to 0.3
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0 to 0.3
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0050
0
Zinc (Zn), % 0
35.7 to 40.5
Residuals, % 0
0 to 0.5