MakeItFrom.com
Menu (ESC)

EN 1.7362 Steel vs. C87610 Bronze

EN 1.7362 steel belongs to the iron alloys classification, while C87610 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7362 steel and the bottom bar is C87610 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21 to 22
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Tensile Strength: Ultimate (UTS), MPa 510 to 600
350
Tensile Strength: Yield (Proof), MPa 200 to 360
140

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 510
190
Melting Completion (Liquidus), °C 1460
970
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 40
28
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.8
2.6
Embodied Energy, MJ/kg 23
43
Embodied Water, L/kg 69
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
62
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 340
88
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18 to 21
11
Strength to Weight: Bending, points 18 to 20
13
Thermal Diffusivity, mm2/s 11
8.1
Thermal Shock Resistance, points 14 to 17
13

Alloy Composition

Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0 to 0.3
90 to 94
Iron (Fe), % 91.5 to 95.2
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.3 to 0.6
0 to 0.25
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0 to 0.3
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
3.0 to 5.0
Sulfur (S), % 0 to 0.0050
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.5