MakeItFrom.com
Menu (ESC)

EN 1.7362 Steel vs. S32750 Stainless Steel

Both EN 1.7362 steel and S32750 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7362 steel and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
270
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 21 to 22
17
Fatigue Strength, MPa 140 to 250
360
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
81
Shear Strength, MPa 320 to 370
530
Tensile Strength: Ultimate (UTS), MPa 510 to 600
860
Tensile Strength: Yield (Proof), MPa 200 to 360
590

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 510
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
21
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.8
4.1
Embodied Energy, MJ/kg 23
56
Embodied Water, L/kg 69
180

Common Calculations

PREN (Pitting Resistance) 6.9
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 340
860
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 21
31
Strength to Weight: Bending, points 18 to 20
26
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 14 to 17
25

Alloy Composition

Carbon (C), % 0.1 to 0.15
0 to 0.030
Chromium (Cr), % 4.0 to 6.0
24 to 26
Copper (Cu), % 0 to 0.3
0 to 0.5
Iron (Fe), % 91.5 to 95.2
58.1 to 66.8
Manganese (Mn), % 0.3 to 0.6
0 to 1.2
Molybdenum (Mo), % 0.45 to 0.65
3.0 to 5.0
Nickel (Ni), % 0 to 0.3
6.0 to 8.0
Nitrogen (N), % 0 to 0.012
0.24 to 0.32
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.8
Sulfur (S), % 0 to 0.0050
0 to 0.020