MakeItFrom.com
Menu (ESC)

EN 1.7365 Steel vs. C10700 Copper

EN 1.7365 steel belongs to the iron alloys classification, while C10700 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.7365 steel and the bottom bar is C10700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18
2.2 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Tensile Strength: Ultimate (UTS), MPa 700
230 to 410
Tensile Strength: Yield (Proof), MPa 470
77 to 410

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 510
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
100
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 4.4
35
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 24
42
Embodied Water, L/kg 70
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
7.9 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 580
25 to 710
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
7.2 to 13
Strength to Weight: Bending, points 22
9.4 to 14
Thermal Diffusivity, mm2/s 11
110
Thermal Shock Resistance, points 20
8.2 to 15

Alloy Composition

Carbon (C), % 0.12 to 0.19
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0 to 0.3
99.83 to 99.915
Iron (Fe), % 91.2 to 94.9
0
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.65
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0
Silver (Ag), % 0
0.085 to 0.12
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0 to 0.050
0
Residuals, % 0
0 to 0.050