MakeItFrom.com
Menu (ESC)

EN 1.7365 Steel vs. C92700 Bronze

EN 1.7365 steel belongs to the iron alloys classification, while C92700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7365 steel and the bottom bar is C92700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 18
9.1
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 700
290
Tensile Strength: Yield (Proof), MPa 470
150

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 510
170
Melting Completion (Liquidus), °C 1460
980
Melting Onset (Solidus), °C 1420
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 40
47
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 9.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 4.4
35
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.8
3.6
Embodied Energy, MJ/kg 24
58
Embodied Water, L/kg 70
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
22
Resilience: Unit (Modulus of Resilience), kJ/m3 580
110
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
9.1
Strength to Weight: Bending, points 22
11
Thermal Diffusivity, mm2/s 11
15
Thermal Shock Resistance, points 20
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.12 to 0.19
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0 to 0.3
86 to 89
Iron (Fe), % 91.2 to 94.9
0 to 0.2
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0 to 0.8
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.7