MakeItFrom.com
Menu (ESC)

EN 1.7366 Steel vs. 1350 Aluminum

EN 1.7366 steel belongs to the iron alloys classification, while 1350 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 210
20 to 45
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 17 to 19
1.4 to 30
Fatigue Strength, MPa 160 to 320
24 to 50
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 290 to 440
44 to 110
Tensile Strength: Ultimate (UTS), MPa 460 to 710
68 to 190
Tensile Strength: Yield (Proof), MPa 230 to 480
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 510
170
Melting Completion (Liquidus), °C 1460
660
Melting Onset (Solidus), °C 1420
650
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
230
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
61 to 62
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
200 to 210

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.7
8.3
Embodied Energy, MJ/kg 23
160
Embodied Water, L/kg 69
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 110
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 600
4.4 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 16 to 25
7.0 to 19
Strength to Weight: Bending, points 17 to 23
14 to 27
Thermal Diffusivity, mm2/s 11
96
Thermal Shock Resistance, points 13 to 20
3.0 to 8.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Boron (B), % 0
0 to 0.050
Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 4.0 to 6.0
0 to 0.010
Copper (Cu), % 0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 91.9 to 95.3
0 to 0.4
Manganese (Mn), % 0.3 to 0.8
0 to 0.010
Molybdenum (Mo), % 0.45 to 0.65
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1

Comparable Variants