MakeItFrom.com
Menu (ESC)

EN 1.7366 Steel vs. 6014 Aluminum

EN 1.7366 steel belongs to the iron alloys classification, while 6014 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 17 to 19
9.1 to 17
Fatigue Strength, MPa 160 to 320
43 to 79
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 290 to 440
96 to 150
Tensile Strength: Ultimate (UTS), MPa 460 to 710
160 to 260
Tensile Strength: Yield (Proof), MPa 230 to 480
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 260
400
Maximum Temperature: Mechanical, °C 510
180
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
200
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
53
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
180

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.7
8.6
Embodied Energy, MJ/kg 23
160
Embodied Water, L/kg 69
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 110
22
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 600
46 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 16 to 25
16 to 26
Strength to Weight: Bending, points 17 to 23
24 to 33
Thermal Diffusivity, mm2/s 11
83
Thermal Shock Resistance, points 13 to 20
7.0 to 11

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.2
Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 4.0 to 6.0
0 to 0.2
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 91.9 to 95.3
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0.3 to 0.8
0.050 to 0.2
Molybdenum (Mo), % 0.45 to 0.65
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15