MakeItFrom.com
Menu (ESC)

EN 1.7366 Steel vs. EN 1.0562 Steel

Both EN 1.7366 steel and EN 1.0562 steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is EN 1.0562 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 210
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 19
24
Fatigue Strength, MPa 160 to 320
270
Impact Strength: V-Notched Charpy, J 38
71
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 290 to 440
350
Tensile Strength: Ultimate (UTS), MPa 460 to 710
550
Tensile Strength: Yield (Proof), MPa 230 to 480
370

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 510
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
50
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.6
Embodied Energy, MJ/kg 23
22
Embodied Water, L/kg 69
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 600
360
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16 to 25
19
Strength to Weight: Bending, points 17 to 23
19
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 13 to 20
17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.024
Carbon (C), % 0 to 0.18
0 to 0.18
Chromium (Cr), % 4.0 to 6.0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 91.9 to 95.3
96.2 to 98.9
Manganese (Mn), % 0.3 to 0.8
1.1 to 1.7
Molybdenum (Mo), % 0.45 to 0.65
0 to 0.080
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.1