EN 1.7366 Steel vs. EN 1.1133 Steel
Both EN 1.7366 steel and EN 1.1133 steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is EN 1.1133 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 140 to 210 | |
170 to 180 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 17 to 19 | |
19 to 24 |
Fatigue Strength, MPa | 160 to 320 | |
230 to 310 |
Impact Strength: V-Notched Charpy, J | 38 | |
45 to 48 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 74 | |
73 |
Shear Strength, MPa | 290 to 440 | |
370 to 380 |
Tensile Strength: Ultimate (UTS), MPa | 460 to 710 | |
580 to 620 |
Tensile Strength: Yield (Proof), MPa | 230 to 480 | |
320 to 460 |
Thermal Properties
Latent Heat of Fusion, J/g | 260 | |
250 |
Maximum Temperature: Mechanical, °C | 510 | |
400 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 40 | |
49 |
Thermal Expansion, µm/m-K | 13 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 8.1 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 9.3 | |
8.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 4.3 | |
2.1 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.7 | |
1.5 |
Embodied Energy, MJ/kg | 23 | |
19 |
Embodied Water, L/kg | 69 | |
48 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 74 to 110 | |
110 to 120 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 140 to 600 | |
270 to 550 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 16 to 25 | |
21 to 22 |
Strength to Weight: Bending, points | 17 to 23 | |
20 to 21 |
Thermal Diffusivity, mm2/s | 11 | |
13 |
Thermal Shock Resistance, points | 13 to 20 | |
18 to 19 |
Alloy Composition
Carbon (C), % | 0 to 0.18 | |
0.17 to 0.23 |
Chromium (Cr), % | 4.0 to 6.0 | |
0 to 0.4 |
Iron (Fe), % | 91.9 to 95.3 | |
96.9 to 98.8 |
Manganese (Mn), % | 0.3 to 0.8 | |
1.0 to 1.5 |
Molybdenum (Mo), % | 0.45 to 0.65 | |
0 to 0.1 |
Nickel (Ni), % | 0 | |
0 to 0.4 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.035 |
Silicon (Si), % | 0 to 0.4 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.035 |