MakeItFrom.com
Menu (ESC)

EN 1.7366 Steel vs. Grade 28 Titanium

EN 1.7366 steel belongs to the iron alloys classification, while grade 28 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is grade 28 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 19
11 to 17
Fatigue Strength, MPa 160 to 320
330 to 480
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
40
Shear Strength, MPa 290 to 440
420 to 590
Tensile Strength: Ultimate (UTS), MPa 460 to 710
690 to 980
Tensile Strength: Yield (Proof), MPa 230 to 480
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 510
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 40
8.3
Thermal Expansion, µm/m-K 13
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.7
37
Embodied Energy, MJ/kg 23
600
Embodied Water, L/kg 69
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 110
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 600
1370 to 3100
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 16 to 25
43 to 61
Strength to Weight: Bending, points 17 to 23
39 to 49
Thermal Diffusivity, mm2/s 11
3.4
Thermal Shock Resistance, points 13 to 20
47 to 66

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.18
0 to 0.080
Chromium (Cr), % 4.0 to 6.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 91.9 to 95.3
0 to 0.25
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.025
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
92.4 to 95.4
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4

Comparable Variants