MakeItFrom.com
Menu (ESC)

EN 1.7366 Steel vs. Grade C-5 Titanium

EN 1.7366 steel belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 210
310
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 19
6.7
Fatigue Strength, MPa 160 to 320
510
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 460 to 710
1000
Tensile Strength: Yield (Proof), MPa 230 to 480
940

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 510
340
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 40
7.1
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 1.7
38
Embodied Energy, MJ/kg 23
610
Embodied Water, L/kg 69
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 110
66
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 600
4200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 16 to 25
63
Strength to Weight: Bending, points 17 to 23
50
Thermal Diffusivity, mm2/s 11
2.9
Thermal Shock Resistance, points 13 to 20
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.18
0 to 0.1
Chromium (Cr), % 4.0 to 6.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 91.9 to 95.3
0 to 0.4
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4