MakeItFrom.com
Menu (ESC)

EN 1.7366 Steel vs. C15500 Copper

EN 1.7366 steel belongs to the iron alloys classification, while C15500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17 to 19
3.0 to 37
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 290 to 440
190 to 320
Tensile Strength: Ultimate (UTS), MPa 460 to 710
280 to 550
Tensile Strength: Yield (Proof), MPa 230 to 480
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 510
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
350
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
90
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
91

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.7
2.7
Embodied Energy, MJ/kg 23
42
Embodied Water, L/kg 69
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 110
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 600
72 to 1210
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 16 to 25
8.6 to 17
Strength to Weight: Bending, points 17 to 23
11 to 17
Thermal Diffusivity, mm2/s 11
100
Thermal Shock Resistance, points 13 to 20
9.8 to 20

Alloy Composition

Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
99.75 to 99.853
Iron (Fe), % 91.9 to 95.3
0
Magnesium (Mg), % 0
0.080 to 0.13
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.65
0
Phosphorus (P), % 0 to 0.025
0.040 to 0.080
Silicon (Si), % 0 to 0.4
0
Silver (Ag), % 0
0.027 to 0.1
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.2