MakeItFrom.com
Menu (ESC)

EN 1.7366 Steel vs. C69300 Brass

EN 1.7366 steel belongs to the iron alloys classification, while C69300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is C69300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 19
8.5 to 15
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
41
Shear Strength, MPa 290 to 440
330 to 370
Tensile Strength: Ultimate (UTS), MPa 460 to 710
550 to 630
Tensile Strength: Yield (Proof), MPa 230 to 480
300 to 390

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Maximum Temperature: Mechanical, °C 510
160
Melting Completion (Liquidus), °C 1460
880
Melting Onset (Solidus), °C 1420
860
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 40
38
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
26
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 1.7
2.7
Embodied Energy, MJ/kg 23
45
Embodied Water, L/kg 69
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 110
47 to 70
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 600
400 to 700
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 16 to 25
19 to 21
Strength to Weight: Bending, points 17 to 23
18 to 20
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 13 to 20
19 to 22

Alloy Composition

Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
73 to 77
Iron (Fe), % 91.9 to 95.3
0 to 0.1
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.3 to 0.8
0 to 0.1
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0.040 to 0.15
Silicon (Si), % 0 to 0.4
2.7 to 3.4
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
18.4 to 24.3
Residuals, % 0
0 to 0.5