MakeItFrom.com
Menu (ESC)

EN 1.7366 Steel vs. C91000 Bronze

EN 1.7366 steel belongs to the iron alloys classification, while C91000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7366 steel and the bottom bar is C91000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 210
180
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 19
7.0
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
39
Tensile Strength: Ultimate (UTS), MPa 460 to 710
230
Tensile Strength: Yield (Proof), MPa 230 to 480
150

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 510
160
Melting Completion (Liquidus), °C 1460
960
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 40
64
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
37
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.7
4.1
Embodied Energy, MJ/kg 23
67
Embodied Water, L/kg 69
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 110
14
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 600
100
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 16 to 25
7.5
Strength to Weight: Bending, points 17 to 23
9.7
Thermal Diffusivity, mm2/s 11
20
Thermal Shock Resistance, points 13 to 20
8.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 91.9 to 95.3
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
14 to 16
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.6