MakeItFrom.com
Menu (ESC)

EN 1.7367 Steel vs. EN 1.7335 Steel

Both EN 1.7367 steel and EN 1.7335 steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7367 steel and the bottom bar is EN 1.7335 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
150 to 160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 18
21 to 22
Fatigue Strength, MPa 310
200 to 220
Impact Strength: V-Notched Charpy, J 31
31 to 35
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 670
500 to 520
Tensile Strength: Yield (Proof), MPa 460
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 600
430
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
44
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
2.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.6
Embodied Energy, MJ/kg 37
21
Embodied Water, L/kg 88
52

Common Calculations

PREN (Pitting Resistance) 13
2.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
91 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 560
210 to 260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 6.9
12
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0.080 to 0.12
0.080 to 0.18
Chromium (Cr), % 8.0 to 9.5
0.7 to 1.2
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 87.3 to 90.3
96.4 to 98.4
Manganese (Mn), % 0.3 to 0.6
0.4 to 1.0
Molybdenum (Mo), % 0.85 to 1.1
0.4 to 0.6
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.012
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0.2 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0