MakeItFrom.com
Menu (ESC)

EN 1.7375 Steel vs. C86500 Bronze

EN 1.7375 steel belongs to the iron alloys classification, while C86500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7375 steel and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
25
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 620
530
Tensile Strength: Yield (Proof), MPa 400
190

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 460
120
Melting Completion (Liquidus), °C 1470
880
Melting Onset (Solidus), °C 1430
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
86
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
22
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
25

Otherwise Unclassified Properties

Base Metal Price, % relative 3.9
23
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 23
48
Embodied Water, L/kg 59
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 420
180
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 11
28
Thermal Shock Resistance, points 18
17

Alloy Composition

Aluminum (Al), % 0.010 to 0.040
0.5 to 1.5
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.25
55 to 60
Iron (Fe), % 94.5 to 96.7
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 0.3 to 0.8
0.1 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.3
0 to 1.0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.3
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0