MakeItFrom.com
Menu (ESC)

EN 1.7376 Steel vs. C11000 Copper

EN 1.7376 steel belongs to the iron alloys classification, while C11000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.7376 steel and the bottom bar is C11000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
1.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Tensile Strength: Ultimate (UTS), MPa 710
220 to 410
Tensile Strength: Yield (Proof), MPa 460
69 to 390

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 26
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
100
Electrical Conductivity: Equal Weight (Specific), % IACS 11
100

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 2.1
2.6
Embodied Energy, MJ/kg 29
41
Embodied Water, L/kg 88
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
6.1 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 560
21 to 640
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
6.8 to 13
Strength to Weight: Bending, points 23
9.0 to 14
Thermal Diffusivity, mm2/s 6.9
110
Thermal Shock Resistance, points 20
8.0 to 15

Alloy Composition

Carbon (C), % 0.12 to 0.19
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
99.9 to 100
Iron (Fe), % 86.2 to 90.6
0
Manganese (Mn), % 0.35 to 0.65
0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Residuals, % 0
0 to 0.1