MakeItFrom.com
Menu (ESC)

EN 1.7376 Steel vs. C17465 Copper

EN 1.7376 steel belongs to the iron alloys classification, while C17465 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7376 steel and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
5.3 to 36
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Tensile Strength: Ultimate (UTS), MPa 710
310 to 930
Tensile Strength: Yield (Proof), MPa 460
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
210
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 26
220
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
22 to 51
Electrical Conductivity: Equal Weight (Specific), % IACS 11
23 to 52

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.1
4.1
Embodied Energy, MJ/kg 29
64
Embodied Water, L/kg 88
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 560
64 to 2920
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
9.7 to 29
Strength to Weight: Bending, points 23
11 to 24
Thermal Diffusivity, mm2/s 6.9
64
Thermal Shock Resistance, points 20
11 to 33

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Carbon (C), % 0.12 to 0.19
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
95.7 to 98.7
Iron (Fe), % 86.2 to 90.6
0 to 0.2
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0.35 to 0.65
0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.4
1.0 to 1.4
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Vanadium (V), % 0 to 0.050
0
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5