MakeItFrom.com
Menu (ESC)

EN 1.7376 Steel vs. C18900 Copper

EN 1.7376 steel belongs to the iron alloys classification, while C18900 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7376 steel and the bottom bar is C18900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
14 to 48
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Tensile Strength: Ultimate (UTS), MPa 710
260 to 500
Tensile Strength: Yield (Proof), MPa 460
67 to 390

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 26
130
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
30
Electrical Conductivity: Equal Weight (Specific), % IACS 11
30

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.1
2.7
Embodied Energy, MJ/kg 29
42
Embodied Water, L/kg 88
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
65 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 560
20 to 660
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
8.2 to 16
Strength to Weight: Bending, points 23
10 to 16
Thermal Diffusivity, mm2/s 6.9
38
Thermal Shock Resistance, points 20
9.3 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0.12 to 0.19
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
97.7 to 99.15
Iron (Fe), % 86.2 to 90.6
0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.35 to 0.65
0.1 to 0.3
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 1.0
0.15 to 0.4
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.6 to 0.9
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5