MakeItFrom.com
Menu (ESC)

EN 1.7376 Steel vs. C62400 Bronze

EN 1.7376 steel belongs to the iron alloys classification, while C62400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7376 steel and the bottom bar is C62400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
11 to 14
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 710
690 to 730
Tensile Strength: Yield (Proof), MPa 460
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 600
220
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 26
59
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 11
13

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
27
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.1
3.2
Embodied Energy, MJ/kg 29
53
Embodied Water, L/kg 88
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
68 to 77
Resilience: Unit (Modulus of Resilience), kJ/m3 560
320 to 550
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
23 to 25
Strength to Weight: Bending, points 23
21 to 22
Thermal Diffusivity, mm2/s 6.9
16
Thermal Shock Resistance, points 20
25 to 26

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0.12 to 0.19
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
82.8 to 88
Iron (Fe), % 86.2 to 90.6
2.0 to 4.5
Manganese (Mn), % 0.35 to 0.65
0 to 0.3
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Vanadium (V), % 0 to 0.050
0
Residuals, % 0
0 to 0.5