MakeItFrom.com
Menu (ESC)

EN 1.7376 Steel vs. C84500 Brass

EN 1.7376 steel belongs to the iron alloys classification, while C84500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7376 steel and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
55
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 20
28
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
39
Tensile Strength: Ultimate (UTS), MPa 710
240
Tensile Strength: Yield (Proof), MPa 460
97

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Maximum Temperature: Mechanical, °C 600
150
Melting Completion (Liquidus), °C 1460
980
Melting Onset (Solidus), °C 1410
840
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 26
72
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
16
Electrical Conductivity: Equal Weight (Specific), % IACS 11
17

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
28
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.1
2.9
Embodied Energy, MJ/kg 29
47
Embodied Water, L/kg 88
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
54
Resilience: Unit (Modulus of Resilience), kJ/m3 560
45
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
7.7
Strength to Weight: Bending, points 23
9.8
Thermal Diffusivity, mm2/s 6.9
23
Thermal Shock Resistance, points 20
8.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.12 to 0.19
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
77 to 79
Iron (Fe), % 86.2 to 90.6
0 to 0.4
Lead (Pb), % 0
6.0 to 7.5
Manganese (Mn), % 0.35 to 0.65
0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.4
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
2.0 to 4.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
10 to 14
Residuals, % 0
0 to 0.7