MakeItFrom.com
Menu (ESC)

EN 1.7376 Steel vs. C90300 Bronze

EN 1.7376 steel belongs to the iron alloys classification, while C90300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7376 steel and the bottom bar is C90300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
41
Tensile Strength: Ultimate (UTS), MPa 710
330
Tensile Strength: Yield (Proof), MPa 460
150

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1410
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 26
75
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 11
12

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
33
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.1
3.4
Embodied Energy, MJ/kg 29
56
Embodied Water, L/kg 88
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
59
Resilience: Unit (Modulus of Resilience), kJ/m3 560
110
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
11
Strength to Weight: Bending, points 23
12
Thermal Diffusivity, mm2/s 6.9
23
Thermal Shock Resistance, points 20
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.12 to 0.19
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
86 to 89
Iron (Fe), % 86.2 to 90.6
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0.35 to 0.65
0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.4
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
7.5 to 9.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.6