MakeItFrom.com
Menu (ESC)

EN 1.7376 Steel vs. S40910 Stainless Steel

Both EN 1.7376 steel and S40910 stainless steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7376 steel and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
23
Fatigue Strength, MPa 320
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
75
Tensile Strength: Ultimate (UTS), MPa 710
430
Tensile Strength: Yield (Proof), MPa 460
190

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 600
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
26
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.1
2.0
Embodied Energy, MJ/kg 29
28
Embodied Water, L/kg 88
94

Common Calculations

PREN (Pitting Resistance) 12
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
80
Resilience: Unit (Modulus of Resilience), kJ/m3 560
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 23
16
Thermal Diffusivity, mm2/s 6.9
6.9
Thermal Shock Resistance, points 20
16

Alloy Composition

Carbon (C), % 0.12 to 0.19
0 to 0.030
Chromium (Cr), % 8.0 to 10
10.5 to 11.7
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 86.2 to 90.6
85 to 89.5
Manganese (Mn), % 0.35 to 0.65
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.4
0 to 0.5
Niobium (Nb), % 0
0 to 0.17
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0 to 0.5
Vanadium (V), % 0 to 0.050
0