MakeItFrom.com
Menu (ESC)

EN 1.7378 Steel vs. EN 1.1133 Steel

Both EN 1.7378 steel and EN 1.1133 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.7378 steel and the bottom bar is EN 1.1133 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
19 to 24
Fatigue Strength, MPa 330
230 to 310
Impact Strength: V-Notched Charpy, J 38
45 to 48
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 430
370 to 380
Tensile Strength: Ultimate (UTS), MPa 700
580 to 620
Tensile Strength: Yield (Proof), MPa 490
320 to 460

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 460
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.3
1.5
Embodied Energy, MJ/kg 33
19
Embodied Water, L/kg 61
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 630
270 to 550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
21 to 22
Strength to Weight: Bending, points 22
20 to 21
Thermal Diffusivity, mm2/s 10
13
Thermal Shock Resistance, points 20
18 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0015 to 0.0070
0
Carbon (C), % 0.050 to 0.1
0.17 to 0.23
Chromium (Cr), % 2.2 to 2.6
0 to 0.4
Iron (Fe), % 94.6 to 96.1
96.9 to 98.8
Manganese (Mn), % 0.3 to 0.7
1.0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0.15 to 0.45
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.035
Titanium (Ti), % 0.050 to 0.1
0
Vanadium (V), % 0.2 to 0.3
0