MakeItFrom.com
Menu (ESC)

EN 1.7378 Steel vs. EN 1.7231 Steel

Both EN 1.7378 steel and EN 1.7231 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7378 steel and the bottom bar is EN 1.7231 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
240 to 280
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
11 to 12
Fatigue Strength, MPa 330
360 to 500
Impact Strength: V-Notched Charpy, J 38
28 to 30
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Tensile Strength: Ultimate (UTS), MPa 700
790 to 930
Tensile Strength: Yield (Proof), MPa 490
570 to 800

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 460
420
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
2.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.3
1.5
Embodied Energy, MJ/kg 33
20
Embodied Water, L/kg 61
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
87 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 630
870 to 1700
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
28 to 33
Strength to Weight: Bending, points 22
24 to 27
Thermal Diffusivity, mm2/s 10
12
Thermal Shock Resistance, points 20
23 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0015 to 0.0070
0
Carbon (C), % 0.050 to 0.1
0.38 to 0.45
Chromium (Cr), % 2.2 to 2.6
0.8 to 1.2
Iron (Fe), % 94.6 to 96.1
96.4 to 98.1
Manganese (Mn), % 0.3 to 0.7
0.6 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0.15 to 0.3
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0.15 to 0.45
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.050 to 0.1
0
Vanadium (V), % 0.2 to 0.3
0