MakeItFrom.com
Menu (ESC)

EN 1.7378 Steel vs. N08800 Stainless Steel

Both EN 1.7378 steel and N08800 stainless steel are iron alloys. They have 48% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.7378 steel and the bottom bar is N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
4.5 to 34
Fatigue Strength, MPa 330
150 to 390
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 430
340 to 580
Tensile Strength: Ultimate (UTS), MPa 700
500 to 1000
Tensile Strength: Yield (Proof), MPa 490
190 to 830

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 460
1100
Melting Completion (Liquidus), °C 1470
1390
Melting Onset (Solidus), °C 1430
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
12
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.3
5.3
Embodied Energy, MJ/kg 33
76
Embodied Water, L/kg 61
200

Common Calculations

PREN (Pitting Resistance) 5.8
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
42 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 630
96 to 1740
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
18 to 35
Strength to Weight: Bending, points 22
18 to 28
Thermal Diffusivity, mm2/s 10
3.0
Thermal Shock Resistance, points 20
13 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.020
0.15 to 0.6
Boron (B), % 0.0015 to 0.0070
0
Carbon (C), % 0.050 to 0.1
0 to 0.1
Chromium (Cr), % 2.2 to 2.6
19 to 23
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 94.6 to 96.1
39.5 to 50.7
Manganese (Mn), % 0.3 to 0.7
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
30 to 35
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0.15 to 0.45
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0.050 to 0.1
0.15 to 0.6
Vanadium (V), % 0.2 to 0.3
0