MakeItFrom.com
Menu (ESC)

EN 1.7378 Steel vs. S32803 Stainless Steel

Both EN 1.7378 steel and S32803 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7378 steel and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 17
18
Fatigue Strength, MPa 330
350
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
81
Shear Strength, MPa 430
420
Tensile Strength: Ultimate (UTS), MPa 700
680
Tensile Strength: Yield (Proof), MPa 490
560

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 460
1100
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
19
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.3
3.7
Embodied Energy, MJ/kg 33
53
Embodied Water, L/kg 61
180

Common Calculations

PREN (Pitting Resistance) 5.8
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 630
760
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 10
4.4
Thermal Shock Resistance, points 20
22

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0015 to 0.0070
0
Carbon (C), % 0.050 to 0.1
0 to 0.015
Chromium (Cr), % 2.2 to 2.6
28 to 29
Iron (Fe), % 94.6 to 96.1
62.9 to 67.1
Manganese (Mn), % 0.3 to 0.7
0 to 0.5
Molybdenum (Mo), % 0.9 to 1.1
1.8 to 2.5
Nickel (Ni), % 0
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0 to 0.010
0 to 0.020
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0.15 to 0.45
0 to 0.55
Sulfur (S), % 0 to 0.010
0 to 0.0035
Titanium (Ti), % 0.050 to 0.1
0
Vanadium (V), % 0.2 to 0.3
0