MakeItFrom.com
Menu (ESC)

EN 1.7378 Steel vs. S43940 Stainless Steel

Both EN 1.7378 steel and S43940 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7378 steel and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
21
Fatigue Strength, MPa 330
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 430
310
Tensile Strength: Ultimate (UTS), MPa 700
490
Tensile Strength: Yield (Proof), MPa 490
280

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 460
890
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.3
2.6
Embodied Energy, MJ/kg 33
38
Embodied Water, L/kg 61
120

Common Calculations

PREN (Pitting Resistance) 5.8
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
86
Resilience: Unit (Modulus of Resilience), kJ/m3 630
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 10
6.8
Thermal Shock Resistance, points 20
18

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.0015 to 0.0070
0
Carbon (C), % 0.050 to 0.1
0 to 0.030
Chromium (Cr), % 2.2 to 2.6
17.5 to 18.5
Iron (Fe), % 94.6 to 96.1
78.2 to 82.1
Manganese (Mn), % 0.3 to 0.7
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Niobium (Nb), % 0
0.3 to 0.6
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0.15 to 0.45
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0.050 to 0.1
0.1 to 0.6
Vanadium (V), % 0.2 to 0.3
0