MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. 6182 Aluminum

EN 1.7380 steel belongs to the iron alloys classification, while 6182 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is 6182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 19 to 20
6.8 to 13
Fatigue Strength, MPa 200 to 230
63 to 99
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 330 to 350
140 to 190
Tensile Strength: Ultimate (UTS), MPa 540 to 550
230 to 320
Tensile Strength: Yield (Proof), MPa 290 to 330
130 to 270

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 460
190
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1430
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 39
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
130

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 1.8
8.4
Embodied Energy, MJ/kg 23
150
Embodied Water, L/kg 59
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
110 to 520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 19 to 20
23 to 32
Strength to Weight: Bending, points 19
30 to 38
Thermal Diffusivity, mm2/s 11
65
Thermal Shock Resistance, points 15 to 16
10 to 14

Alloy Composition

Aluminum (Al), % 0
95 to 97.9
Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0 to 0.25
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 94.6 to 96.6
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.2
Manganese (Mn), % 0.4 to 0.8
0.5 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.9 to 1.3
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.15