MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. 7020 Aluminum

EN 1.7380 steel belongs to the iron alloys classification, while 7020 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is 7020 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 170
45 to 100
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 19 to 20
8.4 to 14
Fatigue Strength, MPa 200 to 230
110 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 330 to 350
110 to 230
Tensile Strength: Ultimate (UTS), MPa 540 to 550
190 to 390
Tensile Strength: Yield (Proof), MPa 290 to 330
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 260
380
Maximum Temperature: Mechanical, °C 460
210
Melting Completion (Liquidus), °C 1470
650
Melting Onset (Solidus), °C 1430
610
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 39
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
39
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 1.8
8.3
Embodied Energy, MJ/kg 23
150
Embodied Water, L/kg 59
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
23 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
110 to 690
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 19 to 20
18 to 37
Strength to Weight: Bending, points 19
25 to 41
Thermal Diffusivity, mm2/s 11
59
Thermal Shock Resistance, points 15 to 16
8.3 to 17

Alloy Composition

Aluminum (Al), % 0
91.2 to 94.8
Carbon (C), % 0.080 to 0.14
0
Chromium (Cr), % 2.0 to 2.5
0.1 to 0.35
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 94.6 to 96.6
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.4
Manganese (Mn), % 0.4 to 0.8
0.050 to 0.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.25
Residuals, % 0
0 to 0.15