MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. AISI 309HCb Stainless Steel

Both EN 1.7380 steel and AISI 309HCb stainless steel are iron alloys. They have 64% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is AISI 309HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160 to 170
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19 to 20
46
Fatigue Strength, MPa 200 to 230
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
78
Shear Strength, MPa 330 to 350
410
Tensile Strength: Ultimate (UTS), MPa 540 to 550
590
Tensile Strength: Yield (Proof), MPa 290 to 330
230

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 460
1090
Melting Completion (Liquidus), °C 1470
1420
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
23
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
4.1
Embodied Energy, MJ/kg 23
59
Embodied Water, L/kg 59
170

Common Calculations

PREN (Pitting Resistance) 5.6
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
210
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19 to 20
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 15 to 16
13

Alloy Composition

Carbon (C), % 0.080 to 0.14
0.040 to 0.1
Chromium (Cr), % 2.0 to 2.5
22 to 24
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.6 to 96.6
56 to 66
Manganese (Mn), % 0.4 to 0.8
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
12 to 16
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030