MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. ASTM B817 Type I

EN 1.7380 steel belongs to the iron alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 19 to 20
4.0 to 13
Fatigue Strength, MPa 200 to 230
360 to 520
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 540 to 550
770 to 960
Tensile Strength: Yield (Proof), MPa 290 to 330
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 460
340
Melting Completion (Liquidus), °C 1470
1600
Melting Onset (Solidus), °C 1430
1550
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 39
7.1
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 1.8
38
Embodied Energy, MJ/kg 23
610
Embodied Water, L/kg 59
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 19 to 20
48 to 60
Strength to Weight: Bending, points 19
42 to 49
Thermal Diffusivity, mm2/s 11
2.9
Thermal Shock Resistance, points 15 to 16
54 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0.080 to 0.14
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 94.6 to 96.6
0 to 0.4
Manganese (Mn), % 0.4 to 0.8
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0 to 0.012
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4