MakeItFrom.com
Menu (ESC)

EN 1.7380 Steel vs. AWS E90C-B9

Both EN 1.7380 steel and AWS E90C-B9 are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.7380 steel and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19 to 20
18
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
75
Tensile Strength: Ultimate (UTS), MPa 540 to 550
710
Tensile Strength: Yield (Proof), MPa 290 to 330
460

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
25
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
2.6
Embodied Energy, MJ/kg 23
37
Embodied Water, L/kg 59
91

Common Calculations

PREN (Pitting Resistance) 5.6
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 87 to 98
110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19 to 20
25
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 11
6.9
Thermal Shock Resistance, points 15 to 16
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0.080 to 0.14
0.080 to 0.13
Chromium (Cr), % 2.0 to 2.5
8.0 to 10.5
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 94.6 to 96.6
84.4 to 90.9
Manganese (Mn), % 0.4 to 0.8
0 to 1.2
Molybdenum (Mo), % 0.9 to 1.1
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0 to 0.012
0.030 to 0.070
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.015
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5